Painlevé-type reductions for the non-Abelian Volterra lattices

V.E. Adler
L.D. Landau ITP

Chernogolovka • 30 October 2020

Outline

Two non-Abelian (matrix) Volterra lattices

- $\mathrm{VL}^{1} \quad u_{n, x}=u_{n+1} u_{n}-u_{n} u_{n-1} \quad$ (M.A.Salle, Theor. Math. Phys. 1982)
- $\mathrm{VL}^{2} \quad u_{n, x}=u_{n+1}^{\mathrm{T}} u_{n}-u_{n} u_{n-1}^{\mathrm{T}} \quad$ (new, arXiv:2010.09021)

Results

- Substitutions $\mathrm{VL}^{1} \leftarrow \cdots \rightarrow \mathrm{VL}^{2}$
- Symmetries
- Lax pairs
- Higher symmetry + scaling $\quad \rightarrow \mathrm{dP}_{1}^{i}+\mathrm{P}_{4}^{i}$
- Master-symmetry + scaling $+D_{x} \rightarrow \mathrm{dP}_{34}^{i}+\mathrm{P}_{5}^{i} \quad i=1,2$
- Master-symmetry $+D_{x} \quad \rightarrow \mathrm{dP}_{34}^{i}+\mathrm{P}_{3}^{i}$

$\mathrm{VL}^{1} \leftarrow \mathrm{mVL}^{1} \leftarrow$ pot-mVL $\rightarrow \mathrm{mVL}^{2} \rightarrow \mathrm{mVL}^{2}$

The relation between VL^{1} and mVL^{2} is far from obvious.

$$
\begin{array}{rll}
\mathrm{VL}^{1}: & u_{n, x}=u_{n+1} u_{n}-u_{n} u_{n-1} \\
\mathrm{mVL}^{1}: & v_{n, x}=v_{n+1}\left(v_{n}^{2}-\alpha^{2}\right)-\left(v_{n}^{2}-\alpha^{2}\right) v_{n-1} \\
\text { pot-mVL }: & w_{n, x}=\left(w_{n+1}+2 \alpha w_{n}\right)\left(w_{n-1}^{-1} w_{n}+2 \alpha\right) \\
\mathrm{mVL}^{2}: & v_{n, x}=\left(v_{n}-\alpha\right) v_{n+1}\left(v_{n}+\alpha\right)-\left(v_{n}+\alpha\right) v_{n-1}\left(v_{n}-\alpha\right) \\
\mathrm{VL}^{2}: & u_{n, x}=u_{n+1}^{\mathrm{T}} u_{n}-u_{n} u_{n-1}^{\mathrm{T}}
\end{array}
$$

Substitutions:

$$
\begin{array}{rll}
\mathrm{VL}^{1} \leftarrow \mathrm{mVL}^{1}: & u_{n}=\left(v_{n+1}+\alpha\right)\left(v_{n}-\alpha\right) & \text { discrete Miura map } \\
\mathrm{mVL}^{1} \leftarrow \text { pot-mVL }: & v_{n}=w_{n+1} w_{n}^{-1}+\alpha & \\
\text { pot- } \mathrm{mVL} \rightarrow \mathrm{mVL}^{2}: & v_{n}=w_{n}^{-1} w_{n+1}+\alpha & \\
\mathrm{mVL}^{2} \rightarrow \mathrm{VL}^{2}: & \begin{cases}u_{n}=\left(v_{n}+\alpha\right)\left(v_{n-1}+\alpha\right) & \text { for even } n \\
u_{n}=\left(v_{n}^{\mathrm{T}}-\alpha\right)\left(v_{n-1}^{\mathrm{T}}-\alpha\right) & \text { for odd } n\end{cases}
\end{array}
$$

Remark: an (incomplete) analogy with KdV

There is a sequence of substitutions
between

$$
\begin{aligned}
\mathrm{KdV}: & u_{t}=u_{x x x}-3 u u_{x}-3 u_{x} u \\
\mathrm{mKdV}^{1}: & v_{t}=v_{x x x}-3 v^{2} v_{x}-3 v_{x} v^{2}-6 \alpha v_{x} \\
\text { pot-mKdV : } & w_{t}=w_{x x x}-3 w_{x x} w^{-1} w_{x}-6 \alpha w_{x} \\
\mathrm{mKdV} & \\
& v_{t}=v_{x x x}+3\left[v, v_{x x}\right]-6 v v_{x} v-6 \alpha v_{x}
\end{aligned}
$$

These equations can be obtained from the corresponding lattice equations by continuous limit, but no continuous analog of VL^{2} is known.

Symmetries: basic derivations

- $D_{x}=D_{t_{1}}$, the lattice itself
- $D_{t_{2}}$, the simplest higher symmetry

$$
\begin{aligned}
& \mathrm{VL}^{1}: u_{n, t_{2}}=\left(u_{n+2} u_{n+1}+u_{n+1}^{2}+u_{n+1} u_{n}\right) u_{n} \\
&-u_{n}\left(u_{n} u_{n-1}+u_{n-1}^{2}+u_{n-1} u_{n-2}\right) \\
& \mathrm{VL}^{2}: \quad u_{n, t_{2}}=\left(u_{n+1}^{\mathrm{T}} u_{n+2}+\left(u_{n+1}^{\mathrm{T}}\right)^{2}+u_{n} u_{n+1}^{\mathrm{T}}\right) u_{n} \\
&-u_{n}\left(u_{n-1}^{\mathrm{T}} u_{n}+\left(u_{n-1}^{\mathrm{T}}\right)^{2}+u_{n-2} u_{n-1}^{\mathrm{T}}\right)
\end{aligned}
$$

- $D_{\tau_{1}}$, the classical scaling symmetry

$$
u_{n, \tau_{1}}=u_{n}
$$

- $D_{\tau_{2}}$, the master-symmetry (nonlocal for VL^{1}, local for VL^{2})

$$
\begin{array}{ll}
\mathrm{VL}^{1}: & u_{n, \tau_{2}}=\left(n+\frac{3}{2}\right) u_{n+1} u_{n}+u_{n}^{2}-\left(n-\frac{3}{2}\right) u_{n} u_{n-1}+\left[s_{n}, u_{n}\right], \\
& s_{n}-s_{n-1}=u_{n} \\
\mathrm{VL}^{2}: & u_{n, \tau_{2}}=\left(n+\frac{3}{2}\right) u_{n+1}^{\mathrm{T}} u_{n}+u_{n}^{2}-\left(n-\frac{3}{2}\right) u_{n} u_{n-1}^{\mathrm{T}}
\end{array}
$$

Remark: associated systems

Due to the lattice, any variable u_{n+k} is an expression of u_{n}, u_{n+1} and their x-derivatives. Thence, any symmetry is equivalent to some coupled PDE system. It is a non-Abelian generalization of the Levi system (Levi, J. Phys. A 1981, Adler \& Sokolov, arXiv: 2008.09174). The map $n \rightarrow n+1$ defines a Bäcklund transformation for this system.

For VL^{1}, the pair $(p, q)=\left(u_{n}, u_{n+1}\right)$ satisfies, for any n, the system

$$
\left\{\begin{array}{l}
q_{t_{2}}=q_{x x}+2 q_{x} q+2(q p)_{x}+2[q p, q] \\
p_{t_{2}}=-p_{x x}+2 p p_{x}+2(q p)_{x}+2[q p, p] .
\end{array}\right.
$$

For VL^{2}, the pair $(p, q)=\left(u_{n}, u_{n+1}^{\mathrm{T}}\right)$ satisfies

$$
\left\{\begin{array}{l}
q_{t_{2}}=q_{x x}+2 q_{x} q+2(p q)_{x}+2[p q, q] \\
p_{t_{2}}=-p_{x x}+2 p_{x} p+2(q p)_{x}+2[p, q p]
\end{array}\right.
$$

Symmetries and constraints

In fact, there exists an infinite hierarchy of flows:

$$
\begin{gathered}
{\left[D_{t_{i}}, D_{t_{j}}\right]=0, \quad\left[D_{\tau_{i}}, D_{t_{j}}\right]=j D_{t_{j+i-1}}} \\
{\left[D_{\tau_{i}}, D_{\tau_{j}}\right]=(j-i) D_{\tau_{j+i-1}}, \quad i, j \geq 1 .}
\end{gathered}
$$

We only use symmetries that contain u_{n+k} with $|k| \leq 2$.

Any linear combination of derivations

$$
D_{t}=\mu_{1}\left(x D_{t_{2}}+D_{\tau_{2}}\right)+\mu_{2}\left(x D_{x}+D_{\tau_{1}}\right)+\mu_{3} D_{t_{2}}+\mu_{4} D_{x}
$$

commute with D_{x}. Therefore, the stationary equation

$$
D_{t}\left(u_{n}\right)=0
$$

is a constraint consistent with the lattice.

Up to equivalence transformations, there are three different cases which lead to (non-Abelian) Painlevé equations:

$$
\begin{array}{rlrll}
& 2\left(x D_{x}+D_{\tau_{1}}\right) \\
x D_{t_{2}}+D_{\tau_{2}} & +\mu\left(x D_{x}+D_{\tau_{1}}\right) & & =0 & \rightarrow \mathrm{dP}_{1}+\mathrm{P}_{4} \\
x D_{t_{2}}+D_{\tau_{2}} & & & +\nu D_{x}=0 & \rightarrow \mathrm{dP}_{34}+\mathrm{P}_{5} \\
+\nu D_{x} & =0 & \rightarrow & \mathrm{dP}_{34}+\mathrm{P}_{3}
\end{array}
$$

- In all cases, we start from some 5-point $\mathrm{O} \Delta \mathrm{E}$

$$
f_{n}\left(u_{n-2}, u_{n-1}, u_{n}, u_{n+1}, u_{n+2} ; x, \mu, \nu\right)=0
$$

- It admits a reduction of order due to partial first integrals (pfi).
- The final result is a discrete Painlevé equation

$$
g_{n}\left(u_{n-1}, u_{n}, u_{n+1} ; x, \mu, \nu, \varepsilon, \delta\right)=0
$$

- It defines a subclass of special solutions of the original equation. Additional constants $\varepsilon, \delta \in \mathbb{C}$ replace two matrix initial data.
- The x-dynamics is also consistent with pfi. The VL is reduced to an ODE system for (u_{n}, u_{n+1}) which is equivalent to a continuous Painlevé equation.

Scaling reduction: $D_{t_{2}}+2\left(x D_{x}+D_{\tau_{1}}\right)=0 \rightarrow \mathrm{dP}_{1}+\mathrm{P}_{4}$

$\mathrm{VL}^{1}:\left(u_{n+2} u_{n+1}+u_{n+1}^{2}+u_{n+1} u_{n}\right) u_{n}-u_{n}\left(u_{n} u_{n-1}+u_{n-1}^{2}+u_{n-1} u_{n-2}\right)$

$$
+2 x\left(u_{n+1} u_{n}-u_{n} u_{n-1}\right)+2 u_{n}=0
$$

$\mathrm{VL}^{2}:\left(u_{n+1}^{\mathrm{T}} u_{n+2}+\left(u_{n+1}^{\mathrm{T}}\right)^{2}+u_{n} u_{n+1}^{\mathrm{T}}\right) u_{n}-u_{n}\left(u_{n-1}^{\mathrm{T}} u_{n}+\left(u_{n-1}^{\mathrm{T}}\right)^{2}+u_{n-2} u_{n-1}^{\mathrm{T}}\right)$

$$
+2 x\left(u_{n+1}^{\mathrm{T}} u_{n}-u_{n} u_{n-1}^{\mathrm{T}}\right)+2 u_{n}=0
$$

This can be represented as $F_{n+1} u_{n}-u_{n} F_{n-1}=0$.
The equality $F_{n}=0$ is pfi. Its consistency with D_{x} is due to identities:

- $F_{n, x}=\left(F_{n+1}-F_{n}\right) u_{n}+u_{n}\left(F_{n}-F_{n-1}\right)$ for VL^{1}
- $F_{n, x}=\left(F_{n+1}^{\mathrm{T}}+F_{n}\right) u_{n}-u_{n}\left(F_{n}+F_{n-1}^{\mathrm{T}}\right)$ for VL^{2}

Two analogs of $\mathbf{d} \mathbf{P}_{1}$

$$
\begin{gathered}
u_{n+1} u_{n}+u_{n}^{2}+u_{n} u_{n-1}+2 x u_{n}+\gamma_{n}=0 \\
u_{n+1}^{\mathrm{T}} u_{n}+u_{n}^{2}+u_{n} u_{n-1}^{\mathrm{T}}+2 x u_{n}+\gamma_{n}=0 \\
\gamma_{n}:=n-\nu+(-1)^{n} \varepsilon
\end{gathered}
$$

Continuous dynamics is as follows.

- $\mathrm{VL}^{1},(p, y)=\left(u_{n-1}, u_{n}\right):$

$$
p_{x}=2 y p+p^{2}+2 x p+\gamma_{n-1}, \quad y_{x}=-y^{2}-2 y p-2 x y-\gamma_{n},
$$

- $\mathrm{VL}^{2},(p, y)=\left(u_{n-1}^{\mathrm{T}}, u_{n}\right)$:

$$
p_{x}=2 p y+p^{2}+2 x p+\gamma_{n-1}, \quad y_{x}=-y^{2}-2 y p-2 x y-\gamma_{n} .
$$

Two analogs of \mathbf{P}_{4}

$$
y^{\prime \prime}=\frac{1}{2} y^{\prime} y^{-1} y^{\prime}+\left[\kappa_{i} y-\gamma y^{-1}, y^{\prime}\right]+\frac{3}{2} y^{3}+4 x y^{2}+2\left(x^{2}-\alpha\right) y-2 \gamma^{2} y^{-1}, \quad \mathrm{P}_{4}^{i}
$$

where $\alpha=\gamma_{n-1}-\gamma_{n} / 2+1, \gamma=\gamma_{n} / 2$,

$$
\kappa_{1}=\frac{1}{2} \quad \text { and } \quad \kappa_{2}=-\frac{3}{2} .
$$

- In the scalar case, this reduction was introduced by Its, Kitaev and Fokas [Russ. Math. Surv. 1990, Comm. Math. Phys. 1991].
- Another non-Abelian version of dP_{1} was studied by Cassatella-Contra, Mañas and Tempesta [Stud. Appl. Math. 2012, Nonlinearity 2018]:

$$
u_{n+1}+u_{n}+u_{n-1}+2 x+\gamma_{n} u_{n}^{-1}=0
$$

Master-symmetry reduction:

$$
x D_{t_{2}}+D_{\tau_{2}}+\mu\left(x D_{x}+D_{\tau_{1}}\right)+\nu D_{x}=0 \rightarrow \mathrm{dP}_{34}+\mathrm{P}_{5} \text { or } \mathrm{P}_{3}
$$

The first step is easy (like in the previous case). It brings to 4 -point equations

$$
\begin{aligned}
\mathrm{VL}^{1}: & x\left(u_{n+2} u_{n+1}+u_{n+1}^{2}-u_{n}^{2}-u_{n} u_{n-1}\right)-\left(2 \mu x-n+\nu-\frac{3}{2}\right) u_{n+1} \\
& +\left(2 \mu x-n+\nu+\frac{1}{2}\right) u_{n}-\mu+2(-1)^{n} \varepsilon=0 \\
\mathrm{VL}^{2}: & x\left(u_{n+1}^{\mathrm{T}} u_{n+2}+\left(u_{n+1}^{\mathrm{T}}\right)^{2}-u_{n}^{2}-u_{n} u_{n-1}^{\mathrm{T}}\right)-\left(2 \mu x-n+\nu-\frac{3}{2}\right) u_{n+1}^{\mathrm{T}} \\
& +\left(2 \mu x-n+\nu+\frac{1}{2}\right) u_{n}-\mu+2(-1)^{n} \varepsilon=0
\end{aligned}
$$

where $\varepsilon \in \mathbb{C}$ is an integration constant. To obtain Painlevé equations, we need additional pfi.
In the scalar case, the above equation admits the integrating factor $x u_{n+1}+x u_{n}+n-\nu+\frac{1}{2}$ which brings to dP_{34} :

$$
\left(z_{n+1}+z_{n}\right)\left(z_{n}+z_{n-1}\right)=4 x \frac{\mu z_{n}^{2}+2(-1)^{n} \varepsilon z_{n}+\delta}{z_{n}-n+\nu}, \quad z_{n}:=2 x u_{n}+n-\nu
$$

[Adler \& Shabat, Theor. Math. Phys. 2019].

Two analogs of $\mathbf{d P}_{34}$ for $\mu \neq 0$

$$
\begin{aligned}
\left(z_{n-1}+z_{n}\right)\left(z_{n}+(-1)^{n} \sigma+\omega\right)^{-1}\left(z_{n}+z_{n+1}\right) & \\
=4 \mu x\left(z_{n}-n+\nu\right)^{-1}\left(z_{n}+(-1)^{n} \sigma-\omega\right), & \mathrm{dP}_{34}^{1} \\
\left(z_{n-1}^{\mathrm{T}}+z_{n}\right)\left(z_{n}+(-1)^{n}(\sigma-\omega)\right)^{-1}\left(z_{n}+z_{n+1}^{\mathrm{T}}\right) & \\
\quad=4 \mu x\left(z_{n}-n+\nu\right)^{-1}\left(z_{n}+(-1)^{n}(\sigma+\omega)\right) & \mathrm{dP}_{34}^{2}
\end{aligned}
$$

(where $\sigma=\varepsilon / \mu, \omega \in \mathbb{C}$).

Two analogs of $\mathbf{d P}_{34}$ for $\mu=0$

$$
\begin{aligned}
&\left\{\begin{aligned}
\left(z_{n+1}+z_{n}\right)\left(z_{n}-n+\nu\right)\left(z_{n}+z_{n-1}\right) & =4 x\left(2 \varepsilon z_{n}+\delta\right), \\
\left(z_{n}+z_{n-1}\right)\left(z_{n+1}+z_{n}\right)\left(z_{n}-n+\nu\right) & n=2 k\left(-2 \varepsilon z_{n}+\delta\right), \\
& n=2 k+1,
\end{aligned}\right. \\
& \quad\left(z_{n+1}^{\mathrm{T}}+z_{n}\right)\left(z_{n}-n+\nu\right)\left(z_{n}+z_{n-1}^{\mathrm{T}}\right)=4 x\left(2(-1)^{n} \varepsilon z_{n}+\delta\right) . \mathrm{d} \widetilde{\mathrm{P}}_{34}^{2}
\end{aligned}
$$

Equations dP_{34}^{i} and dP_{34}^{i} are consistent with VL^{i}. This gives rize to ODE systems for the variables $(q, p)=\left(z_{n}, z_{n}+z_{n+1}\right)$ or $\left(z_{n}, z_{n}+z_{n+1}^{\mathrm{T}}\right)$.

Two analogs of \mathbf{P}_{5}

$$
\begin{aligned}
& \mathrm{dP}_{34}^{1} \rightarrow\left\{\begin{array}{l}
2 x q_{x}=p(q-n+\nu)-4 \mu x(q+\alpha) p^{-1}(q+\beta), \\
2 x p_{x}=p q+q p+p-p^{2}+4 \mu x(p-2 q-\alpha-\beta),
\end{array}\right. \\
& \mathrm{dP}_{34}^{2} \rightarrow\left\{\begin{array}{l}
2 x q_{x}=p(q-n+\nu)-4 \mu x(q+\alpha) p^{-1}(q+\beta), \\
2 x p_{x}=2 p q+p-p^{2}+4 \mu x(p-2 q-\alpha-\beta)
\end{array}\right.
\end{aligned}
$$

(in the scalar case, P_{5} is satisfied by $y=1-4 \mu x p^{-1}$).

Two analogs of \mathbf{P}_{3}

$$
\begin{align*}
& \mathrm{d} \widetilde{\mathrm{P}}_{34}^{1} \rightarrow\left\{\begin{array}{lll}
2 x q_{x}=p(q-n+\nu)-4 x p^{-1}(2 \varepsilon q+\delta), & (\text { even } n) & \mathrm{P}_{3}^{1} \\
2 x p_{x}=p q+q p+p-p^{2}-8 \varepsilon x,
\end{array}\right. \\
& \mathrm{d} \widetilde{\mathrm{P}}_{34}^{2} \rightarrow \begin{cases}2 x q_{x}=p(q-n+\nu)-4 x p^{-1}\left(2(-1)^{n} \varepsilon q+\delta\right), & \mathrm{P}_{3}^{2} \\
2 x p_{x}=2 p q+p-p^{2}-8(-1)^{n} \varepsilon x\end{cases} \tag{3}
\end{align*}
$$

(in the scalar case, P_{3} is satisfied by $y=p /(2 \xi), x=\xi^{2}$).

Zero curvature representations

$$
\begin{aligned}
\mathrm{VL}^{1}: \quad u_{n, x} & =u_{n+1} u_{n}-u_{n} u_{n-1} \quad \Leftrightarrow \quad L_{n, x}=U_{n+1} L_{n}-L_{n} U_{n} \\
L_{n} & =\left(\begin{array}{cc}
\lambda & \lambda u_{n} \\
-1 & 0
\end{array}\right), \quad U_{n}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{VL}^{2}: \quad u_{n, x} & =u_{n+1}^{\mathrm{T}} u_{n}-u_{n} u_{n-1}^{\mathrm{T}} \quad \Leftrightarrow \quad L_{n, x}=U_{n+1} L_{n}+L_{n} U_{n}^{\mathrm{T}} \\
L_{n} & =\left(\begin{array}{cc}
1 & -\lambda \\
0 & \lambda u_{n}
\end{array}\right), \quad U_{n}=\left(\begin{array}{cc}
\frac{1}{2} \lambda & 1 \\
-\lambda u_{n-1} & -\frac{1}{2} \lambda-u_{n-1}+u_{n}^{\mathrm{T}}
\end{array}\right)
\end{aligned}
$$

These are the compatiblity conditions, respectively, for

$$
\Psi_{n+1}=L_{n} \Psi_{n}, \quad \Psi_{n, x}=U_{n} \Psi_{n}
$$

or for

$$
\begin{aligned}
\Psi_{2 n+1} & =L_{2 n} \Psi_{2 n} & & \Psi_{2 n, x}=-U_{2 n}^{\mathrm{T}} \Psi_{2 n} \\
& =L_{2 n+1}^{\mathrm{T}} \Psi_{2 n+2}, & & \Psi_{2 n+1, x}=U_{2 n+1} \Psi_{2 n+1}
\end{aligned}
$$

More generally, any derivation from $\mathrm{VL}^{1} / \mathrm{VL}^{2}$ hierarchy admits a representation of the form

$$
L_{n, t}+\kappa L_{n, \lambda}=V_{n+1} L_{n}-L_{n} V_{n} \quad \text { or } \quad L_{n, t}+\kappa L_{n, \lambda}=V_{n+1} L_{n}+L_{n} V_{n}^{\mathrm{T}},
$$

with respective L_{n} and with certain V_{n} and $\kappa=\kappa(\lambda)$.
In both cases, we also have

$$
U_{n, t}+\kappa U_{n, \lambda}=V_{n, x}+\left[V_{n}, U_{n}\right] .
$$

Therefore, for the stationary equation for D_{t}, we have the isomonodromic Lax pairs:

$$
\kappa L_{n, \lambda}=V_{n+1} L_{n}-L_{n} V_{n} \quad \text { or } \quad \kappa L_{n, \lambda}=V_{n+1} L_{n}+L_{n} V_{n}^{\mathrm{T}}
$$

for a discrete Painlevé equation and

$$
\kappa U_{n, \lambda}=V_{n, x}+\left[V_{n}, U_{n}\right]
$$

for a continuous one.

Explanation of dP_{34}^{i} partial first integral

Lemma. If $V_{n}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfies Lax equations

$$
V_{n, x}=\left[U_{n}, V_{n}\right], \quad V_{n+1} L_{n}=L_{n} V_{n} \quad \text { or } \quad V_{n+1} L_{n}=-L_{n} V_{n}^{\mathrm{T}}
$$

then its quasi-determinant $\Delta_{n}=b-a c^{-1} d$ is pfi.

Proof. It is easy to derive relations of the form

$$
\Delta_{n, x}=f \Delta-\Delta g, \quad \Delta_{n+1}=f \Delta_{n} g \quad \text { or } \quad \Delta_{n+1}=f \Delta_{n}^{\mathrm{T}} g
$$

which imply that the constraint $\Delta=0$ is preserved.

The constraint $x D_{t_{2}}+D_{\tau_{2}}+\mu\left(x D_{x}+D_{\tau_{1}}\right)+\nu D_{x}=0$ admits the isomonodromic Lax pairs with $\kappa(\lambda)=\lambda^{2}-2 \mu \lambda$. For $\lambda=2 \mu$, the matrix $V_{n}-\alpha I$ satisfies Lax equations and vanishing of its quasi-determinant gives exactly dP_{34}^{i}.

