Painlevé-type reductions for the non-Abelian
Volterra lattices

V.E. Adler

L.D. Landau ITP

Chernogolovka - 30 October 2020

TG ETY RGO  _ Abel x Volterra — Painlevé 30 October 2020 1/17


http://adler.itp.ac.ru/talks/Adler_matrix_VL_2020_10_30_ITP.pdf

Outline

Two non-Abelian (matrix) Volterra lattices
o VL' w, , =upi1un — upun—1  (M.A.Salle, Theor. Math. Phys. 1982)
o VL? w,, =ul qu, —upul_; (new, arXiv:2010.09021)

Results
o Substitutions VL' - -+ — VL?

e Symmetries

o Lax pairs

e Higher symmetry + scaling — dP% + P}

e Master-symmetry + scaling + D, — dP%§, + PL =12
e Master-symmetry + D, — dPi, + P}
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VL! « mVL! « pot-mVL — mVL? — mVL?

The relation between VL' and mVL? is far from obvious.

VL!: Up,g = Unt+1Un — UpUn—1
mVL' . v, = vp1(v2 — a?) — (V2 — a®)v, (a € C)
pot-mVL :  wy, o = (Wnpy1 + 2awn)(w;i1wn + 2a)
mVL?: v, = (v, — @) vps1(vn + @) — (Vp + @)vp_1 (v, — @)

T

2. — 7
VLt Up e = Uy Un — Unly, g

Substitutions:
VL' <« mVL': u, = (041 + @) (v, — @) discrete Miura map
mVL! « pot-mVL : v, = wn+1w;1 + «
pot-mVL — mVL?: v, = w;lwnﬂ + «

Up = (Up + @)(vp—1 + @) for even n

VL? - VL? .
" {Un = (vp —a)(vy_; —a) forodd n
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Remark: an (incomplete) analogy with KdV

There is a sequence of substitutions

V=W w

—a2 S §
KAV =250t gyt P o mKdY 22 KAV
Miura map

between

KdV : wu; = uger — 3uu, — 3uzu
mKdV!: v = vgpr — 3020, — 30,02 — 6,
pot-mKdV : w; = wyze — 3wmw_1wm — 6wy,
mKdV?: vy = vpap + 3V, Vpr] — 6000 — 6av,

These equations can be obtained from the corresponding lattice equations by
continuous limit, but no continuous analog of VL? is known.
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Symmetries: basic derivations

D, = Dy, the lattice itself
Dy,, the simplest higher symmetry

1. _ 2
VL™ : Uy ity = (Ung2Ung1 + Up g + Ungp1Un)Un

2
— Up (UnpUp—1 + Uy + Up—1Up—2)

VL? : Un,ty = (U;+1un+2 + (UZH)? + un“ﬁﬂ)“n

T T 2 T
- un(un—lun + (un—l) + un—Qun—l)
e D, , the classical scaling symmetry
Unp,ry = Un

D,,, the master-symmetry (nonlocal for VL!, local for VL?)

VL!: Up ry = (n + %)unﬂun +u? — (n - %)unun,l + [Sn, tn),
Sp — Sp—1 = Up

VL?: ., = (n+2)ur ju, +ul — (n—3uul_,
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Remark: associated systems

Due to the lattice, any variable w, 4k is an expression of u,, u, 1 and their
x-derivatives. Thence, any symmetry is equivalent to some coupled PDE
system. It is a non-Abelian generalization of the Levi system (Levi, J. Phys. A
1981, Adler & Sokolov, arXiv: 2008.09174). The map n — n + 1 defines a
Béacklund transformation for this system.

For VL!, the pair (p,q) = (un, uny1) satisfies, for any n, the system

Gty = Qoo + 2429 + 2(qp)2 + 2[qp, g,
Pty = —DPaa + 20Dz + 2(qp). + 2[qp, D).

For VL2, the pair (p,q) = (u,, u’, ) satisfies

Gty = Qoo + 2029 + 2(pq)2 + 2[pg, g,
Dty = —DPaa + 202p + 2(qp)= + 2[p, qp).
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Symmetries and constraints

In fact, there exists an infinite hierarchy of flows:

[Dti7Dtj]:O? [DTi7Dtj]:thj+i—1?
[Z)Ti’l)7y] = (j —-i)l) 1,5 > 1.

Tjti—17

We only use symmetries that contain w,y, with |k < 2.

Any linear combination of derivations
Dy = pi(xDy, + D7,) + po(xDy + D7) 4+ pusDy, + paDy
commute with D,. Therefore, the stationary equation
Dyi(u,) =0

is a constraint consistent with the lattice.
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Up to equivalence transformations, there are three different cases which lead
to (non-Abelian) Painlevé equations:

2($Dw + Dn) +Ds, =0 — dP;+Py
2Dy, + Dy, +p(xDy + Dyy) 4+vD, =0 — dPs3s+Pjs
SCDt2 + DTQ +vD, =0 — dP34 + P3

o In all cases, we start from some 5-point OAE
fn(un72; Un—1,Un, Un+1, Un+4+2; T, W, V) =0.

o It admits a reduction of order due to partial first integrals (pfi).

o The final result is a discrete Painlevé equation

gn(“’n—ly Up y Un+15 Ty [y V,E,é) = 0.

o It defines a subclass of special solutions of the original equation.
Additional constants €, € C replace two matrix initial data.

o The z-dynamics is also consistent with pfi. The VL is reduced to an
ODE system for (uy, u,+1) which is equivalent to a continuous Painlevé
equation.
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Scaling reduction: D, +2(xD, + D,)=0 - dP;+ Py

1 2 2
VL™ (Ung2Unt1 + Uy 1 + Ungp1Un)Un — Un (UpUp—1 + Uy 1 + Up_1Up_2)

+ 22 (Up41Un — Unln—1) + 2u, =0,

VL? : (u£+1un+2 + (u7TL+1)2 + unuszJrl)“n — U (U U, + (u271)2 + Un 2y, _q)

+ 22 (U Up — UnUpy_1) + 2up, = 0.

This can be represented as Fj,11uy, — upFr—1 = 0.

The equality F,, = 0 is pfi. Its consistency with D, is due to identities:
o F.=(Fu1— Fy)up +uy(F, — F,—q) for VL!
o Frp=(Fry+ Fy)u, —un(F, + Fr_y) for VL2

Two analogs of dP;
Up41Up + ui + uptp—1 + 2zuy + v, =0, dpi
UP Uy + U+ Upty_y + 23Uy, + Y = 0, dp?
Yo i=n—v+(—1)"e.
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Continuous dynamics is as follows.
o VL', (p,y) = (tn—1,un):
Pe =2yp+ > + 22D+ Va1, Yo = —Y° — 2yp — 20y — Y,
o VL?, (p,y) = (uj_1, un):

P =2pY +P° + 22D + Vo1, Yo = —Y> — 2yp — 22y — Y.

Two analogs of P,

1, _ _ 3 - i
Yy =5y [y =y Y+ S ey 2% —a)y = 297y P

where o = 7y,,_1 — %/2 +1, v= ’Yn/Qa

3
K1 25 and @:—5.
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o In the scalar case, this reduction was introduced by Its, Kitaev and
Fokas [Russ. Math. Surv. 1990, Comm. Math. Phys. 1991].

@ Another non-Abelian version of dP; was studied by Cassatella-Contra,
Manas and Tempesta [Stud. Appl. Math. 2012, Nonlinearity 2018]:

Un41 + Uup +Up—1+ 2x + ’Ynu:Ll =0.
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Master-symmetry reduction:
xDy, + D, + u(xD, + D)) +vD, =0 — dP3y+ P5or P
The first step is easy (like in the previous case). It brings to 4-point equations
VL!: (U 2Unt1 + Ui+1 —u? —upy_1) — 2ur —n+v— %)Un+1
+ 2uz —n+v+ Hu, — p+2(-1)" =0,
VL 2 (uf o ungo + (Ul 1)? —ul —upulr ) — (2uz —n+v— 3ul,,
+ 2uz —n+v+ Hu, — p+2(=1)" =0,
where € € C is an integration constant. To obtain Painlevé equations, we
need additional pfi.

In the scalar case, the above equation admits the integrating factor
TUpt1 + TUp +1 —V + % which brings to dPsy:

puz2 4+ 2(=1)"ez, + 6

(Z’n-‘rl +Zn)(zn+zn—1) =4z Zn—n+1/

,  Zp i=2TUp +n— Vv

[Adler & Shabat, Theor. Math. Phys. 2019].
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Two analogs of dP3, for p # 0

(zn—l + Zn)(zn + (_1)n‘7 + W)_l(zn + Zn+1)

=dpx(z, —n4+v) e+ (=1)"0 — w), dPi,
(zn—1 + 20) (20 + (=1)"(0 = w)) " (20 + 2711)

= dp(zn —n+v) "z + (-1)"(0 +w)) dP3,

(where ¢ = ¢/, w € C).

Two analogs of dP34 for 1 =10

(Zn41 + 2n)(zn — 0+ V) (2n, + 2n—1) = 42(2e2, +9), n =2k, Bl
(zn + 2n—1)(Znt+1 + 2n) (2n —n +v) = da(—2e2, +9), n=2k+1, 3
(Zpt1 +2n)(2n —n+v)(2n + 2, 1) = 42(2(=1)"cz, +0). df’§4
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Equations dP%, and dPi, are consistent with VL. This gives rize to ODE

systems for the variables (q,p) = (2n, 2n + Zn41) O (2n, 2n + 2 4 1)-

Two analogs of Py
dPl N { QxQx :p(q_n+y)_4MI(Q+a)p71(Q+ﬂ)a Pl
o 2ap, = pg +qp+p —p* + dpz(p — 2¢ — a — B), ¥
dP2 N { 2$Qw :p(qfnJrl/)*4,u1:(q+oz)p71(q+ﬂ), P2
34 2ep, = 2pq + p — p* + 4px(p — 29 — a — ) °
(in the scalar case, Pj is satisfied by y = 1 — 4uxp~1).
Two analogs of P3
~ 22q, = p(q —n +v) —dxp~t(2eq + 9),
1 1
W= { 2wp, = pq+qp+p—p* — 8, (evenn)  Ps
~ 22q, = p(q —n+v) — dep=1(2(=1)"eq + 6),
2 2
Pa = { 2ap, = 2pq +p —p° — 8(—1)"ex ik
(in the scalar case, Pj3 is satisfied by y = p/(2¢), » = £2).

—Abel X Volterra — Painlevé 30 October 2020



Zero curvature representations

1
VL : Up,z = Up41Up — UpUn—1 = Ln,z - n+1Ln - LnUn

e (B000) (0

VL wpy =l un —upul_y & Lyg = U1 Ly + LUF
1 =X 1 1
= — 2
Ln (0 /\un> o Un (—)\un_l —%)\ — Up1 + uﬁ)

These are the compatiblity conditions, respectively, for

\Iln+1 - Ln\:[lna \Iln,x - Un\Ijn

or for
T
Yont1 = L2p¥ap, Von,e = —Us,Van,

= L§n+1 Uonq2, ‘I’2n+1,z = Uzpny1¥on41-
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More generally, any derivation from VL!/VL? hierarchy admits a
representation of the form

Ln,t + KJLn,)\ = VnJran - LnVn or Ln,t + KLTL)\ = Vn+1Ln + LnV»r’Lra

with respective L,, and with certain V,, and k = &(\).

In both cases, we also have
Un,t + HUn,)\ = Vn,z + [Vna Un]

Therefore, for the stationary equation for D;, we have the isomonodromic
Lax pairs:

K:Ln,/\ = Vn+1Ln - L,V, or Han,A = Vn+1Ln + LnVnT
for a discrete Painlevé equation and

HUn,)\ = Vn,z + [Vna Un]

for a continuous one.
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Explanation of dP%, partial first integral

a

Lemma. If V, = (c b) satisfies Lax equations

d
Vow = [Un, Val, Voi1Ln =LV, or VoL, =-L,V,

then its quasi-determinant A,, = b — ac™d is pfi.

Proof. It is easy to derive relations of the form

An,x = fA - Ag, Apyr=fApg or Apypr= fAig

which imply that the constraint A = 0 is preserved.

The constraint Dy, + Dr, + p(xDy + D7) + vD, = 0 admits the
isomonodromic Lax pairs with x(\) = A% — 2u\. For A = 24, the matrix

V, — ol satisfies Lax equations and vanishing of its quasi-determinant gives
exactly dP%,.
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